Source code for psdr.gn

# 2018 (c) Jeffrey M. Hokanson and Caleb Magruder
from __future__ import print_function, division

import warnings
import numpy as np
import scipy.linalg
import scipy as sp


__all__ = ['linesearch_armijo',
	'gauss_newton',
	'trajectory_linear',
	]


class BadStep(Exception):
	pass


def trajectory_linear(x0, p, t):
	return x0 + t * p


[docs]def linesearch_armijo(f, g, p, x0, bt_factor=0.5, ftol=1e-4, maxiter=40, trajectory = trajectory_linear, fx0 = None): """Back-Tracking Line Search to satify Armijo Condition f(x0 + alpha*p) < f(x0) + alpha * ftol * <g,p> Parameters ---------- f : callable objective function, f: R^n -> R g : np.array((n,)) gradient p : np.array((n,)) descent direction x0 : np.array((n,)) current location bt_factor : float [optional] default = 0.5 backtracking factor ftol : float [optional] default = 1e-4 coefficient in (0,1); see Armijo description in Nocedal & Wright maxiter : int [optional] default = 10 maximum number of iterations of backtrack trajectory: function(x0, p, t) [Optional] Function that returns next iterate Returns ------- float alpha: backtracking coefficient (alpha = 1 implies no backtracking) """ dg = np.inner(g, p) assert dg <= 0, 'Descent direction p is not a descent direction: p^T g = %g >= 0' % (dg, ) alpha = 1 if fx0 is None: fx0 = f(x0) fx0_norm = np.linalg.norm(fx0) x = np.copy(x0) fx = np.inf success = False for it in range(maxiter): try: x = trajectory(x0, p, alpha) fx = f(x) fx_norm = np.linalg.norm(fx) if fx_norm < fx0_norm + alpha * ftol * dg: success = True break except BadStep: pass alpha *= bt_factor # If we haven't found a good step, stop if not success: alpha = 0 x = x0 fx = fx0 return x, alpha, fx
[docs]def gauss_newton(f, F, x0, tol=1e-10, tol_normdx=1e-12, maxiter=100, linesearch=None, verbose=0, trajectory=None, gnsolver = None): r"""A Gauss-Newton solver for unconstrained nonlinear least squares problems. Given a vector valued function :math:`\mathbf{f}:\mathbb{R}^m \to \mathbb{R}^M` and its Jacobian :math:`\mathbf{F}:\mathbb{R}^m\to \mathbb{R}^{M\times m}`, solve the nonlinear least squares problem: .. math:: \min_{\mathbf{x}\in \mathbb{R}^m} \| \mathbf{f}(\mathbf{x})\|_2^2. Normal Gauss-Newton computes a search direction :math:`\mathbf{p}\in \mathbb{R}^m` at each iterate by solving least squares problem .. math:: \mathbf{p}_k \leftarrow \mathbf{F}(\mathbf{x}_k)^+ \mathbf{f}(\mathbf{x}_k) and then computes a new step by solving a line search problem for a step length :math:`\alpha` satisfying the Armijo conditions: .. math:: \mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha \mathbf{p}_k. This implementation offers several features that modify this basic outline. First, the user can specify a nonlinear *trajectory* along which candidate points can move; i.e., .. math:: \mathbf{x}_{k+1} \leftarrow T(\mathbf{x}_k, \mathbf{p}_k, \alpha). Second, the user can specify a custom solver for computing the search direction :math:`\mathbf{p}_k`. Parameters ---------- f : callable residual, :math:`\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^M` F : callable Jacobian of residual :math:`\mathbf{f}`; :math:`\mathbf{F}: \mathbb{R}^m \to \mathbb{R}^{M \times m}` tol: float [optional] default = 1e-8 gradient norm stopping criterion tol_normdx: float [optional] default = 1e-12 norm of control update stopping criterion maxiter : int [optional] default = 100 maximum number of iterations of Gauss-Newton linesearch: callable, returns new x f : callable, residual, f: R^n -> R^m g : gradient, R^n p : descent direction, R^n x0 : current iterate, R^n gnsolver: [optional] callable, returns search direction p Parameters: F: current Jacobian f: current residual Returns: p: search step s: singular values of Jacobian verbose: int [optional] default = 0 if >= print convergence history diagnostics Returns ------- numpy.array((dof,)) returns x^* (optimizer) int info = 0: converged with norm of gradient below tol info = 1: norm of gradient did not converge, but ||dx|| below tolerance info = 2: did not converge, max iterations exceeded """ n = len(x0) if maxiter <= 0: return x0, 4 if verbose >= 1: print('Gauss-Newton Solver Iteration History') print(' iter | ||f(x)|| | ||dx|| | cond(F(x)) | alpha | ||grad|| ') print('---------|--------------|------------|------------|------------|------------') if trajectory is None: trajectory = lambda x0, p, t: x0 + t * p if linesearch is None: linesearch = linesearch_armijo if gnsolver is None: # Scipy seems to properly check for proper allocation of working space, reporting an error with gelsd # so we specify using gelss (an SVD based solver) def gnsolver(F_eval, f_eval): dx, _, _, s = sp.linalg.lstsq(F_eval, -f_eval, lapack_driver = 'gelss') return dx, s x = np.copy(x0) f_eval = f(x) F_eval = F(x) grad = F_eval.T @ f_eval normgrad = np.linalg.norm(grad) #rescale tol by norm of initial gradient tol = max(tol*normgrad, 1e-14) normdx = 1 for it in range(maxiter): residual_increased = False # Compute search direction dx, s = gnsolver(F_eval, f_eval) # Check we got a valid search direction if not np.all(np.isfinite(dx)): raise RuntimeError("Non-finite search direction returned") # If Gauss-Newton step is not a descent direction, use -gradient instead if np.inner(grad, dx) >= 0: dx = -grad # Back tracking line search x_new, alpha, f_eval_new = linesearch(f, grad, dx, x, trajectory=trajectory) normf = np.linalg.norm(f_eval_new) if np.linalg.norm(f_eval_new) >= np.linalg.norm(f_eval): residual_increased = True else: #f_eval = f(x) f_eval = f_eval_new x = x_new normdx = np.linalg.norm(dx) F_eval = F(x) grad = F_eval.T @ f_eval_new ######################################################################### # Printing section if s[-1] == 0: cond = np.inf else: cond = s[0] / s[-1] if verbose >= 1: normgrad = np.linalg.norm(grad) print( ' %3d | %1.4e | %8.2e | %8.2e | %8.2e | %8.2e' % ( it, normf, normdx, cond, alpha, normgrad)) # Termination conditions if normgrad < tol: if verbose: print("norm gradient %1.3e less than tolerance %1.3e" % (normgrad, tol)) break if normdx < tol_normdx: if verbose: print("norm dx %1.3e less than tolerance %1.3e" % (normdx, tol_normdx)) break if residual_increased: if verbose: print("residual increased during line search from %1.5e to %1.5e" % (np.linalg.norm(f_eval), np.linalg.norm(f_eval_new))) break if normgrad <= tol: info = 0 if verbose >= 1: print('Gauss-Newton converged successfully!') elif normdx <= tol_normdx: info = 1 if verbose >= 1: print ('Gauss-Newton did not converge: ||dx|| < tol') elif it == maxiter - 1: info = 2 if verbose >= 1: print ('Gauss-Newton did not converge: max iterations reached') elif np.linalg.norm(f_eval_new) >= np.linalg.norm(f_eval): info = 3 if verbose >= 1: print ('No progress made during line search') else: raise Exception('Stopping criteria not determined!') return x, info